Combining Experiments and Simulations Using the Maximum Entropy Principle

نویسندگان

  • Wouter Boomsma
  • Jesper Ferkinghoff-Borg
  • Kresten Lindorff-Larsen
چکیده

A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative Filtering Efficiently Using Purchase Orders

We propose a new collaborative filtering method that can predict the next purchase item by efficiently using the sequential information in purchase histories for recommendations. Markov models and maximum entropy models are both widely used techniques for such recommendations. In Markov models, parameters can be estimated and updated fast and efficiently, but predictions may not be accurate. On...

متن کامل

Maximum Entropy Analysis for G/G/1 Queuing System (TECHNICAL NOTE)

This paper provides steady state queue-size distribution for a G/G/1 queue by using principle of maximum entropy. For this purpose we have used average queue length and normalizing condition as constraints to derive queue-size distribution. Our results give good approximation as demonstrated by taking a numerical illustration. In particular case when square coefficient of variation of inter-arr...

متن کامل

Using the Maximum Entropy Principle to Combine Simulations and Solution Experiments

Molecular dynamics (MD) simulations allow the investigation of the structural dynamics of biomolecular systems with unrivaled time and space resolution. However, in order to compensate for the inaccuracies of the utilized empirical force fields, it is becoming common to integrate MD simulations with experimental data obtained from ensemble measurements. We review here the approaches that can be...

متن کامل

Comparison of entropy generation minimization principle and entransy theory in optimal design of thermal systems

In this study, the relationship among the concepts of entropy generation rate, entransy theory, and generalized thermal resistance to the optimal design of thermal systems is discussed. The equations of entropy and entransy rates are compared and their implications for optimization of conductive heat transfer are analyzed. The theoretical analyses show that based on entropy generation minimizat...

متن کامل

A Note on the Bivariate Maximum Entropy Modeling

Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1  and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014